THE SYSTEMS NbF5-RbF AND NbF5-CsF

D. BIZOT

Laboratoire de Chimie Minérale, E.R.nº9, C.N.R.S., Université Pierre et Marie Curie, Tour 54, 4, place Jussieu, 75230 Paris, Cedex 05.

SUMMARY

 NbF_5 systems (M=Rb,Cs) are investigated by differential thermal analysis and X ray powder diffraction. Six types of ternary fluorides are found, and lattice parameters calculated for most of them. Comparison with the NbF_5 -TlF system is carried out.

INTRODUCTION

The present work extends to rubidium and cesium the study of the systems NbF_5 -MF (M=alcalis, thallium, ammonium) which have been carried out previously in our laboratory. Results with M=Li,Na,K [1] and Tl [2] have been published before ; those with M=NH⁺_h will be published later.

We present here the phase diagrams of NbF_5-RbF (CsF) and X-ray powder diffraction data for several new compounds, then, we draw comparison between these systems and the NbF_5 -TlF binary.

EXPERIMENTAL

 NbF_5 was obtained as a commercial product and refined by distillation under vacuum. RbF and CsF are obtained by the action of 40% aquous hydrogene fluoride with the appropriate carbonate, evaporation of the solution, and drying of the solid under an argon stream at 600°C.

Reactions between NbF_5 and MF are carried out in sealed nickel tubes, at 20°C below the temperature of the lowest thermal change (transition, eutectic,...) observed for the mixture.

For differential thermal analysis we use tight nickel crucibles up to 1000° C. We note heating temperatures (accuracy \pm 5°C). Special sample holders are available for X-ray powder diffraction up to 200° C.

We have not found a suitable fluid for density measurements on powders because the fluids examined reacted, or traces of water caused hydrolysis. We have used the theoretic density as a function of starting materials densities and composition, and we assume that actual density is not very different.

RESULTS

The systems NbF₅-TlF, NbF₅-RbF and NbF₅-CsF exhibit the following ternary fluoride species : MNb_4F_{21} (for M = Cs only), MNb_3F_{16} (for M = Tl and Rb), MNb_2F_{11} , $MNbF_6$, M_2NbF_7 , M_3NbF_8 (all for M = Tl, Rb, Cs). In every case, the powders obtained are pale grey, very hygroscopic, and we never detect the presence of single crystals.

Before our study, the $MNbF_6$ fluorides were the subject of important cristallographic work by Bode and Von Döhren [3], $Cox \begin{bmatrix} 4 \end{bmatrix}$ and Kemmitt and Col. [5], on single crystals formed by the action of BrF_3 upon a mixture of niobium pentoxyde and the alcali metal fluoride. These authors found that the $MNbF_6$ compounds, for M = Tl,Rb,Cs, are isostructural with a rhomboedral lattice of the $KOsF_6$ type, space groupe $R\bar{3}$, with one formula weight per unit cell.

The X-ray powder diffraction patterns of $\alpha TlNbF_6$, $\alpha RbNbF_2$ and $\alpha CsNbF_6$, obtained by direct reaction between NbF₅ and MF are accuratly indexed with lattice parameters given by these authors except for TlNbF₆ (a = 5.21 Å instead of 5.14 Å).

In this work, except for the $MNbF_6$ type, we have indexed most of the X-ray diffraction patterns by calculations and trials, because of the lack of single crystals.

These crystal data are therefore tentative only ; nevertheless, the use of the theoretic density and lattice parameters assigned to various phases leads,to the numbers of formula weight per unit cell very consistently.

Figure 1 exhibits the NbF_5 -RbF and NbF_5 -CsF phase diagrams which relevant data listed below. Table I collects the crystallographic parameters of different compounds, and interplanar lengths and hkl values are listed in Table II.

Figure 1. NbF₅-RbF and NbF₅-CsF phase diagrams.

% RbF	temp.	phenomena	% CsF	temp.	phenomena
0	80	NbF ₅ melting	0	80	NbF ₅ melting
3	77	Eutectic	2	78	Eutectic
25	115	$\alpha RbNb_3F_{16} \neq \beta$	20	105	αCsNb ₄ F ₂₁ ↔ β
	166	RbNb ₃ F ₁₆		157	CsNb ₄ F ₂₁ peritexy
33.3	120	$\alpha RbNb_2F_{11} \neq \beta$	33,3	86	$\alpha C s N b 2^F 11 \neq \beta$
	220	RbNb ₂ F ₁₁ peritex	7	272	CsNb ₂ F ₁₁ peritexy
50	106	$\alpha RbNbF_{6} \neq \beta$	50	137	$\alpha CsNbF_{6} \neq \beta$
	520	RbNbF ₆ melting		174	β ≵ ∦
53	488	Eutectic		570	CsNbF ₆ melting
66.6	660	Rb _o NbF ₇	55	518	Eutectic
75	702	$\alpha Rb_3^{NbF} \approx \beta$	66.6	670	$^{Cs}2^{NbF}$ 7 peritexy
	788	Rb ₂ NbF ₂ melting	75	756	Cs ₃ NbF ₈ melting
89	686	Eutectic	88	628	Eutectic
100	796	RbF melting	100	704	CsF melting

TABLE I

NbF5/MF	TlF	RbF	CsF
14			α CsNb ₄ F ₂₁ rhomb. a=9.52 Å α=88.8° d=3.56 Z=2 β CsNb ₄ F ₂₁ non obtained X-ray pattern.
3	TlNb ₃ F ₁₆ Intricate X-Ray pattern.	RbNb ₃ F ₁₆ Intricate X-Ray pattern. RbNb ₃ F ₁₆ rhomb. $a=11.30 \text{ A} \ll =95^{\circ}$ $d=3.38 \qquad Z=4$	
2		$\propto \text{RbNb}_{2}F_{11}$ rhomb. $a=12.76 \text{ Å} \propto =91.20^{\circ}$ $d=3.32 \qquad Z=9$ $(\text{$RbNb}_{2}F_{11} \text{ cubic})$ a=7.38 Å	$\propto \text{CsNb}_2 F_{11}$ rhomb. $a=12.47 \text{ Å} \ll =91^{\circ}30$ $d=3.56 \qquad Z=8$ $(3 \text{ CsNb}_2 F_{11} \text{ rhomb.})$ $d=12.73 \text{ Å} =91^{\circ}7$
1	\propto TlNbF ₆ rhomb. a=5.21 A \propto =96.37 β TlNbF ₆ cub. a=5.28 A (t=104°C)	\propto RbNbF ₆ rhomb. a=5.14 A $\propto =96.4^{\circ}$ $(3 \text{ RbNbF}_{6} \text{ cub.}$ a=5.27 A (t=120°C)	α CsNbF ₆₀ rhomb. $a=5.32$ A $\propto =95.8^{\circ}$ β CsNbF ₆₀ cub. a=5.41 A (t=145°C) β CsNbF ₆₀ no observed.
1/2	Tl ₂ NbF ₇ rhomb. a=10.97 ∝ =9.25° d=6.66 Z=8		Cs_2NbF_7 monoclinic a=11.50 Å b=10.97 Å c= 9.08 Å β =95° d= 3.57 Z=5
1/3	Tl ₃ NbF ₈ hexagonal a=8.59 Å c=6.69Å d=7.06 Z=2	$ \begin{array}{c} \text{Rb}_{3} \text{NbF}_{8} \text{ monoclinic} \\ \text{a=10.65 Å b=9.40 Å} \\ \text{c= 8.58 Å } \textbf{\beta} = 91^{\circ}2 \\ \text{d= 3.04 } Z=3 \end{array} $	Cs ₃ NbF ₈ monoclinic a=11.20 Å b=9.85 Å c= 8.93 Å β=91°5 d= 3.57 Z=3

500

TABLE II

∝ ^{CsNb} 4 ^F 21			TIND	3 ^F 16	∝ RbNb3 ^F 16		β RbNb ₃ F ₁₆		16
d	1/1 ₀	hkl	d	I/I _o	đ	1/10	d	1/1	hkl
6.75	4	110	7.25	35	7 24	4	5.52	50	200
5.59	5	1 1 1	-	-	6.08	8	4.18	100	2.2.0
4.31	2	210	-	-	5.67	13	3.914	8	221
4.20	7	210	-	-	5.09	5	3.785	95	220
3.965	100	211	-	-	4.90	10	3.706	30	300
3.860	24	211	4.44	6	4.43	24	3.639	8	310
3.383	6	220	4.15	10	4.16	92	2.957	24	222
3.311	4	220	-	· –	4.07	13	2.808	5	400
3.241	2	221	4.011	100	3.980	36	2.772	5	410
3.170	4	300	3.931	10	3.907	100	2.646	15	410
2,923	2	311	3.887	50	3.873	25	2.332	28	224
2,846	4	311	3.738	6	3.767	13	2.149	5	430
2,756	12	255	3.613	72	3.607	62	2.124	7	422
2.576	7	321	-	-	3.553	18	2.091	16	<u>440</u>
2.304	8	410	3.424	8	3.504	26	1.985	8	333
2.279	15	330	-	-	3.202	12	1.871	16	600
2.241	7	<u> </u>	-	-	3.140	10	[
2.030	4	332	-	-	3.099	9			
1.982	9	422	-	-	3.027	9	1		
1.894	3	431	2.947	7	2.930	6			
			2.723	4	2.802	7			
			2.673	8	2.673	8	1		
			-	-	2.624	4			
			2.546	12	2.547	8			
			2.396	5	2.406	8			
			2.228	9	2.253	10			
			2.212	9	2.211	17			

TABLE II (continued)

x T	1Nb2 ^F 11		∝ ^{RbNb} 2 ^F 11			~	∝ ^{CsNb} 2 ^F 11		
đ	I/I ₀	hkl	d	I/I _o	hkl	đ	1/1 ₀	hkl	
7.28	70	1 1.0	7.24	8	1 1 1	7.13	6	1 1 1	
4.033	100	211	5.60	9	210	4.207	100	221	
3.904	52	220	5.28	9	211	3.972	25	310	
3.717	7	221	5.10	14	211	3.890	42	310	
3.616	81	220	4.19	3	221	3.636	80	222	
3.435	8	310	3.987	83	310	3.545	21	222	
3.358	14	311	3.870	42	3 1 1	3.097	12	400	
2.957	12	321	3.831	19	ī 3 1	2.864	3	133	
2.829	2	222	3.705	13	222	2.757	2	420	
2.680	14	322	3.601	100	222	2.642	13	332	
2.615	2	330	3.417	15	132	2.539	10	430	
2.553	21	331	2.925	15	ī 3 3	2.415	7	333	
2.509	7	410	2.744	4	421	2.353	7	333	
2.402	16	330	2.715	4	233	2.290	15	520	
2.359	12	332	2.671	9	332	2.241	4	521	
2.234	11	<u>4</u> 22	2.544	17	500	2.199	6	440	
2.219	11	4 30	2.509	6	430	2.174	5	433	
2.197	7	421	2.400	8	333	2.092	13	433	
2.173	7	431	2.371	9	234	2.005	6	611	
2.111	8	500	2.355	11	520	1.983	4	532	
2.004	16	521	2.339	12	432	1.929	11	540	
1.909	λ ₄	333	2.221	12	440	ł			
1.850	10	521	2.208	14	522				
			2.164	7	530				
			2.112	10	600				

β τιντ	$\beta \operatorname{TlNb}_{2^{F}11} \beta \operatorname{RbNb}_{2^{F}11}$				βC	^{sNb} 2 ^F 11	
đ	I/I _o	h k l	đ	I/I _o	đ	I/I ₀	hkl
7.29	7	100	7.25	1	7.14	10	1 1 1
5.24	3	110	5.22	23	5.30	9	211
4.27	15	1 1 1	4.19	14	4.33	43	221
3.711	100	200	3.685	100	3.972	33	310
-	-	211	3.019	3	3.907	8	311
2. 622	17	220	2.615	8	3.745	100	311
2.343	6	310	2.330	4	3.572	33	320
2.141	51	222	2.136	39	3.062	10	410
1.982	3	321	-	-	2.656	7	332
1.855	15	400	1.850	15	2.584	15	4 33
					2.484	3	510
					2.375	22	333
					2.294	4	432
					2.209	13	440
					2.165	16	441
					2.083	6	610
					1.981	3	620
					1.933	5	443
					1.872	5	622

\prec Tinbr	6	∝ ^{RbMt}	^{oF} 6	∝ CsNt		
d	1/1 ₀	d	1/1 ₀	d	I/I ⁰	hkl
5.14	6	5.09	11	_	_	100
3.847	100	3.834	100	3.945	100	110
3.432	91	3.396	94	3.520	95	110
3.076	3	3.060	2	-		ī 1 1
2.666	8	2.634	5	2.747	8	111
2.560	17	2.544	17	2.627	18	200
2.400	15	2.391	8	2.461	10	210
2.217	14	2.213	13	2.274	13	211
2.189	ц	-	-		-	210
2.129	36	2.118	52	2.187	42	121
-	-	1.918	11	-	-	220
1.918	15	1.894	8	1.972	16	211
1.715	6	-	-	-	-	220
C TINDF	6	(3 RbNbF ₆		A CsNbF ₆		
d	I/I _o	d	1/10	d	I/I _o	hkl
5.29	5	5.27	8	5.39	4	100
3.741	100	3.726	100	3.825	100	1 1 0
3.056	6	-	-	3.105	9	1 1 1
2.646	13	2.636	10	2.718	16	200
2.346	10	-	-	2.403	6	210
2.158	33	2.151	46	2.201	39	211
1.867	12	1.865	14	1.918	9	220

TABLE II (continued)

TABLE II (continued)

Т	12 ^{NbF} 7		Rb ₂ NbF ₇ Cs ₂ NbF ₇					
d.	I/I _o	hkl	d	I/I _o	hkl	đ	I/I _o	hkl
5.15	3		5.40	14	111	5.67	5	200
5.03	4	210	5.24	42	200	5.48	9	020
3.965	4	220	5.03	12	020	4.51	4	002
3.795	71	220	4.74	20	002	4.51	4	002
3.735	45	221	3.938	100	211	3.972	100	220
3.550	66	310	3.834	51	202	3.795	45	300
3.415	100	310	3.782	20	112	3.735	26	221
3.376	38	311	3.659	74	220	3.556	40	221
3.106	21	320	3.482	8	300	3.358	46	031
2.993	2	321	3.373	34	030	3.297	24	122
2.733	10	400	3.310	12	310	3.151	23	320
2.712	4	322	3.195	56	130	3.013	20	003
2.634	2	410	3.056	6	113	2.919	11	222
2.563	2	331	2.984	32	131	2.501	15	322
2.502	16	330	2.911	20	103	2.458	32	240
2.381	10	332	2.342	28	140	2.412	15	313
2.342	6	421	2.194	23	421	2.384	15	421
2.235	35	332	2.085	44	500	2.303	25	500
2.191	12	500	1			2.273	19	303
2.151	19	422				2.194	14	050
2.083	17	431				2.169	30	431
1.955	3	432				2.102	6	233
1.912	8	433				1.983	6	4 4 0
1.888	11	440				1.916	16	600

TABLE II (continued)

	T13NbF8		Rb ₃ N	^{lbF} 8	Cs ₃ NbF ₈		
â	I/I _o	hkl	d	1/10	hkl	d	1/1
3.726	27	200	5.39	9	200	_	
3.587	5	1 1 1	4.72	12	020	-	-
3.348	33	002	4.29	8	002	-	-
3.250	100	201	-	-	102	4.11	5
3.052	5	102	-	-	121	3.965	6
2.637	5	112	3.674	42	ī 1 2	3.840	32
2.593	10	211	3.612	17	112	3.760	18
2.486	23	202	3.386	55	202	3.559	47
2.320	6	301	3.333	100	310	3.477	100
2.147	20	220	-	-	221	3.386	20
1.901	22	203	3.170	74	022	3.309	85
1.857	14	400	-	-	031	3.082	8
1.805	24	222	2.822	8	320	2.953	9
1.668	б	004	2.656	24	400	2.782	20
1.662	3	402	-	-	401	2.656	5
			_	-	411	2.599	5
			2.617	5	312	-	-
			2.402	3	322	-	-
			2.354	19	040	2.463	11
			2.220	10	4 1 2	2.322	5.
			2.140	53	004	2.229	43
			1.979	25	204	2.076	19
			1.872	17	050	1.967	11
			1.849	6	224	1.924	5
L			1.806	35	224	1.886	28

An important analogy is found between the three diagrams NbF₅-MF. All of the compounds rich in NbF₅ (NbF₅/MF > 1) decompose by peritexy and show a crystal transition, except TlNb₃F₁₆. Both of the compounds MNbF₆ and M_3NbF_8 melt congruently, the first type having one or two crystal transitions. The M_2NbF_7 type decomposes in the solid state (M=Tl) or melts incongruently. Cesium is unique in showing the MNb₄F₂₁ type structure.

From crystallographic data, we observe the following : The $MNbF_6$ compounds are isostructural : "low temperature" phases are rhombohedral, as seen above, and "high temperature" phases are cubic with $a_{cubic} = a_{rhomb.}$ for the same compound. We can consider that the conversion consists in a slight distorsion from the cubic cell into a rhombohedral cell without variation of a nor Z.

From Rb_3NbF_8 and Cs_3NbF_8 X ray diffraction patterns, these compounds appear to be monoclinic and isostructural. This is different from Rb_2NbF_7 and Cs_2NbF_7 , both of which are monoclinic but not isostructural. Tl_2NbF_7 is rhombohedral.

 $\alpha TINb_2F_{11}$ and $\alpha RbNb_2F_{11}$ are quite similar but it is not possible to index the second with the lattice constants of the first. The $\alpha CsNb_2F_{11}$ X-ray pattern is different. Nevertheless, the three compounds have rhombohedral lattices. $TINb_2F_{11}$ and $RbNb_2F_{11}$ undergo crystalline conversion and the β forms are cubic and isostructural.

Thallium compounds seem slightly different from the analogous rubidium or cesium salts.

REFERENCES

- 1 D. BIZOT, M. MALEK-ZADEH, Rev.Chim.Min., 11, 1974, p.710.
- 2 D. BIZOT, H. VESTEGAINE, J.Inorg.Nucl.Chem., Supplement 1976, Pergamon Press, p.67.
- 3 H. BODE, H. Von DOHREN, Naturwiss., 44, 1957, p.179.
- 4 B. COX, J.Chem.Soc., 1956, p.876.
- 5 R.O.W. KEMMITT, D.R.RUSSEL, D.W.A. SHARP, J.Chem.Soc., 1963, p.4408.